
Physics 195 / Applied Physics 195 — Assignment #9
Professor: Donhee Ham
Teaching Fellows: Laura Adams & Dario Rosenstock
Due: 5pm SHARP (4:50pm + 10 min grace period), December 4th, 2015 @ MD Rm 131.

Problem 1 (100 pt): Carrier concentration and transport in semiconductor

(a) Consider a semiconductor with valence band maximum εv and conduction band minimum εc (band
gap: εg = εc − εv). Both conduction and valence bands may be approximated with quadratic dispersion
with density-of-states effective mass of m∗e and m∗h, which would take into account any possible quadratic
dispersion anisotropy and valley degeneracy. Assume εv < µ < εc, εc − µ � kBT , and µ − εv � kBT for
chemical potential µ. Show that conduction band electron density n and valence band hole density p are

n = 2

(
m∗e

2π~2
kBT

) 3
2

exp

(
−εc − µ
kBT

)
; (1)

p = 2

(
m∗h

2π~2
kBT

) 3
2

exp

(
εv − µ
kBT

)
. (2)

Show that np is independent of µ (law of mass action): regardless of doping, np stays constant; if n-doped,
n ↑ and p ↓ and if p-doped, n ↓ and p ↑, but np is the same. Prove that intrinsic chemical potential µi is

µi = εc −
1

2
εg +

3

4
kBT ln

(
m∗h
m∗e

)
(3)

and thus is almost at the middle of the band gap. Let ni and pi be intrinsic n and p (ni = pi). Show

n = ni exp

(
µ− µi
kBT

)
; (4)

p = pi exp

(
µi − µ
kBT

)
. (5)

Argue that if the semiconductor is n-doped, µ > µi and if p-doped, µ < µi.

(b) Calculate ni = pi and µi for silicon at 300K. Use m∗e = 1.1m0 and m∗h = 0.55m0. The m∗h value
given here is not most accurate: as we discussed in Lecture #18, the behavior of the 3 silicon valence bands
around their maxima at the Γ point of the 1st Brillouin zone are slightly complicated; while this can be mod-
eled more accurately, let’s just use the m∗h value given above, as it will not prevent us from seeing the essence.

(c) A silicon sample is doped with 1016 cm−3 boron atoms and a certain number of donors. µ is 0.36 eV
above µi at 300K. What is the donor concentration Nd?

(d) A silicon sample is doped with 1017 cm−3 arsenide atoms. Calculate n, p, and µ at 300 K. Repeat the
problem for a silicon sample doped with 1017 cm−3 boron atoms.

(e) Estimate arsenic donor density Nd required to make the conductivity 104 times greater than the intrinsic
conductivity of a crystalline silicon at 300 K. Use1 µe = 450 cm2/V·s and µh = 150 cm2/V·s for electron
and hole mobility, and assume—rather unrealistically—that these mobilities stay the same after the doping.

(f) Show that the Hall coefficient RH of a semiconductor is given by

RH =
1

e

pµ2
h − nµ2

e

(pµh + nµe)2
. (6)

Once again, µe and µh refer to electron and hole mobilities, not chemical potentials (see footnote 1).

1µ is a common notation for both chemical potential and mobility; in this set µ is mobility if subscripts ‘e’ or ‘h’ accompany.
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Problem 2 (100 pt; no collaboration): Carrier concentration and chemical potential in semimetal

A semimetal has an energy overlap of εo > 0 between valence and conduction bands. That is, the valence
band maximum εv and the conduction band minimum εc are related by εv−εc = εo. The conduction band has
g equivalent minimum valleys, with each valley having an ellipsoidal quadratic dispersion with longitudinal
effective mass of m∗L and transverse effective mass of m∗T . The valence band has no valley degeneracy and
has a spherical quadratic dispersion with an effective mass of m∗S . Determine the position of the chemical
potential µ—or Fermi level, εF ; that is, you may assume TF � T—, the conduction band electron concen-
tration, and the valence band hole concentration in terms of the given parameters.

Problem 3 (80 pt): Semiconductor junctions

(a) A silicon pn junction has Na = 1017 cm−3 on the p side, and Nd = 1016 cm−3 on the n side. At 300K,
calculate the chemical potential µ for each region, and draw the equilibrium band diagram. Find the built-in
potential V0 from the diagram. Succinctly explain the transport mechanism of the majority charge carriers
(electrons from the n-doped region and holes from the p-doped region) when the pn junction is forward
biased. What do the majority charge carriers do if the junction is reverse biased? (I am not asking you
about minority charge carriers, as they only give rise to a very small leakage current).

(b) Consider a p+np bipolar junction transistor with p+ region called emitter, n region base, and p region
collector. Draw the equilibrium energy band diagram. Also draw the band diagram when the p+n junction
is forward biased and the np junction reverse biased. Under this bias arrangement (called forward active
bias), explain the transport of the majority charge carriers (holes from the p+ and p regions, and electrons
from the n region), drawing what is similar to the top figure on page 5 of Lecture #21. The key device point
is that the current between the collector and emitter terminals can be controlled by using the voltage of the
3rd (base) terminal, while not drawing much current into the 3rd terminal; can you explain this mechanism
in conjunction with your transport picture of majority charge carriers?

Problem 4 (150 pt; no collaboration): Plasmonic excitation in 3D conductor

This problem seeks to guide you through the concept and technical details of Lecture #22, whose big picture I
outlined in class. The plasmonic excitation in 3D conductor can be described by solving for the local electron
density n(~r, t) = n0 + δn(~r, t) and local electron velocity ~v(~r, t), where n0 is the equilibrium electron density
(which is charge balanced by the same density of background positive ions). Key dynamical equations are:

mp
d~v

dt
= −e ~E − 1

n
~∇P ; (7)

∂n

∂t
= −~∇ · (n~v). (8)

Eq. (8) states the conservation of overall electron number (continuity equation). Eq. (7) is the equation of
motion. The left hand side of Eq. (7) represents the inertial acceleration of the plasmonic mass mp (collective
mass per electron). Its right hand side consists of Coulomb and Pauli restoring forces: the Coulomb restoring

force −e ~E arises due to the electron density perturbation (see Eq. (11)); the Pauli restoring force also arises
due to the electron density perturbation, as it causes the gradient in electron degeneracy pressure P . Using
~∇P = (∂P/∂n)n0

~∇n and assuming that δn and ~v are small perturbations from equilibrium, show that Eqs.
(7) and (8) may be linearized to

∂~v

∂t
= − e

mp

~E − α

n0
~∇δn; (9)

∂δn
∂t

= −n0~∇ · ~v, (10)

where α ≡ (1/mp) (∂P/∂n)n0
. In addition to these two dynamical equations, you need Maxwell’s equations:

~∇ · ~E = −eδn
ε0

(11)
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~∇ · ~B = 0 (12)

~∇× ~E = −∂
~B

∂t
(13)

~∇× ~B = −µ0n0e~v + ε0µ0
∂E

∂t
(14)

For example, Eq. (11) is a vital self-consistency statement that connects the local electron density pertur-

bation δn to the local Coulomb restoring field ~E, which is used in Eq. (9). Take another example with Eq.

(14): this connects the local Coulomb restoring field ~E with the local electron velocity ~v or current2 −n0e~v.
Generally put, the Maxwell’s equations can be used to determine the electric and magnetic fields generated
by, and also affecting, the collective dynamics of electrons.

(a) Longitudinal plasmonic mode

We first solve for a longitudinal mode, where ~E is parallel to the wave vector ~k, i.e., ~∇× ~E = 0.

• Under ~∇× ~E = 0 (~k ‖ ~E), show ~v ‖ ~E ‖ ~∇δn; that is, the electron density, electron velocity, and electric

field all locally vibrate along the wave propagation direction. Notice that ~B = 0 under ~∇ × ~E = 0,
which means that this longitudinal mode cannot give rise to an electromagnetic radiation.

• Under ~∇× ~E = 0, show that δn and ~v are described by the following wave equations:

∂2δn
∂t2

+ ω2
pδn − α∇2δn = 0; (15)

∂2~v

∂t2
+ ω2

p~v − α~∇(~∇ · ~v) = 0. (16)

Using harmonic analysis, show that the dispersion relation of this longitudinal mode is given by

ω2 = ω2
p + αk2 (17)

where ωp = (n0e
2/mpε0)1/2 is the plasma frequency. This longitudinal mode is the plasmonic wave

where the electron density is spatiotemporally modulated according to Eq. (15).

• The formalism above applies to not only conductors with dense population of electrons, but also classical
plasma with rarefied electrons (e.g., ionosphere, laboratory glow discharge, solar wind, interstellar
medium, intergalactic medium, and many more). In classical plasma: mp = m0; n0 is typically
small and yields a low plasma frequency ωp; and α arises not from electron degeneracy pressure but
from thermal pressure. The longitudinal mode for classical plasma is called Langmuir wave, and the
longitudinal dispersion of Eq. (17) is called Bohm-Gross dispersion for classical plasma. In classical
plasma, α due to thermal pressure is proportional to temperature: see Part (e). When α cannot
be ignored at high enough temperature, the classical plasma is called ‘warm.’ If α is ignorable at
low enough temperature, the classical plasma is ‘cold.’ In conductors, α due to electron degeneracy
pressure is not temperature dependent to the first order: see Part (e).

• If we ignore the Pauli restoring force (set α to 0), Eqs. (15) and (16) collapse to time differential
equations with no spatial derivatives:

∂2δn
∂t2

+ ω2
pδn = 0; (18)

∂2~v

∂t2
+ ω2

p~v = 0. (19)

These correspond to the longitudinal bulk oscillation at a single frequency ωp discussed in Section B of
Lecture #22. This bulk oscillation is not a wave (i.e., physical entities are not spatially modulated),

2This current that appears in the first term on the right hand side of Eq. (14) should be rigorously −ne~v not −n0e~v, but
we take the linear approximation ignoring the product of δn and ~v.
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or it is a wave with infinite wavelength. Thus you can appreciate that the Pauli restoring force is
vital to create the longitudinal plasmonic wave in a 3D conductor while the Coulomb restoring force
alone only creates the bulk oscillation (as we will discuss in Lecture #23, this is not the case with
2D conductors, where only Coulomb restoring force without Pauli restoring force can create plasmonic
waves). Calculate the bulk oscillation frequency ωp/2π for gold, silver, and copper. In what spectral
regime do these frequencies fall? We have so far ignored electron scattering. If many plasmonic
oscillation cycles occur within the electron scattering time τ , that is, if ωpτ � 1, we can readily
observe the bulk plasma oscillation (as well as the longitudinal plasmonic mode, as it can occur only
for ω > ωp; see Eq. (17)). Calculate ωpτ for gold, silver, and copper.

(b) Transverse electromagnetic mode

We now solve for a transverse mode, where ~E ⊥ ~k, that is, ~∇ · ~E = 0.

• Under ~∇ · ~E = 0 (~k ⊥ ~E), show ~k ⊥ ~B and ~E ⊥ ~B while ~E ‖ ~v and δn = 0. This is a transverse
electromagnetic wave, whose electric field grabs and moves electrons perpendicularly to the wave
propagation direction. Spatiotemporal electron density modulation does not occur. Argue that an
electromagnetic wave irradiated onto 3D conductor will propagate through the conductor—if a certain
condition for the frequency is met; see below—in this transverse mode instead of the longitudinal mode.

• Under ~∇ · ~E = 0, show that the local electron velocity ~v is described by the following wave equation:

∂2~v

∂t2
+ ω2

p~v − c2∇2~v = 0. (20)

Using harmonic analysis, show that the dispersion relation for this transverse mode is given by

ω2 = ω2
p + c2k2. (21)

This transverse mode is the electromagnetic mode that propagates through the conductor, if the
incoming electromagnetic wave satisfies ω > ωp (‘ultraviolet transparency’ for metals). If ω < ωp for
which k becomes imaginary, the electromagnetic wave radiated onto the conductor is reflected. This
formalism applies again also to classical plasma; reflecting a radio wave off of the ionosphere with
ω < ωp is a well-known example.

(c) General approach that subsumes the results of Parts (a) and (b)

We can study the collective electron excitation without assuming any particular mode (e.g., longitudinal or
transverse) of excitation a priori. By applying harmonic analysis to Eqs. (9-14) generally, show that

(ω2 − ω2
p − αk2) ~E‖ + (ω2 − ω2

p − c2k2) ~E⊥ = 0 (22)

where ~E = ~E‖ + ~E⊥, ~k ‖ ~E‖, and ~k ⊥ ~E⊥. From this general secular equation, argue that Eq. (17) and (21)
naturally emerge as dispersion relations for the longitudinal and transverse mode.

(d) Wave propagation speed and dielectric constant

Calculate the wave propagation velocity (phase velocity) vL and vT—not to be confused with the local elec-
tron velocity ~v—for the longitudinal plasmonic wave and the transverse electromagnetic wave as functions
of ω. From this, determine the frequency-dependent dielectric constants for both modes.

(e) The α factor

Earlier α was defined as

α =
1

mp

(
∂P

∂n

)
n0

. (23)

As seen above, α affects only the longitudinal plasmonic mode. Here we seek to calculate α for both classical
plasma and conductor.
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• We first consider classical plasma where α arises from thermal pressure. As the longitudinal plasmonic
mode happens too fast to allow significant heat to flow, use the adiabatic relation P ∝ nγ to show
α = (γkBT/m0), where γ is the ratio of the specific heat at constant pressure to that at constant
volume. Recall from the ideal gas study that γ is related to the degree of freedom of electron f in the
following manner: γ(f) = (f + 2)/f . If f = 3 is used, γ(3) = 5/3 and α = 5/3 · (kBT/m0). However,

the plasmonic wave is a high-frequency phenomenon where the pressure gradient parallel to ~k is only
relevant. Thus, f = 1, γ = 3, and α = 3 · (kBT/m0) would be more correct. The correction factor to
make transition from ‘static’ α to ‘dynamic’ (and correct) α is γ(1)/γ(3) = 9/5.

• For conductor, assuming quadratic dispersion with an effective mass m∗ for an individual electron,
show that α arising from the standard static electron degeneracy pressure is given by α = (1/3)v2F .
As in classical plasma, this static α is not most correct, for the plasma excitation is a high frequency
phenomenon where one-directional dynamic pressure is only relevant. The correction factor is opera-
tionally the same as the classical plasma—9/5—(this can be justified from what is called random phase
approximation (RPA)), and α = (3/5)v2F is a more correct result.
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