
Applied Physics 216 — Assignment #2
Professor: Donhee Ham

Teaching Fellow: Jundong Wu
Date: Feb 10th, 2017

Due: 10:20am + 10 min grace period, Feb 17th, 2017; slide your work under through the door at
Maxwell-Dworkin Room 131.

Problem 1 (50 pt): Spontaneous decay vs. T1 relaxation

(a) 1H spin 1/2’s are subjected to a 10-T static magnetic field in temperature 300 K. T1 = 5 s (typical with
1H spin 1/2’s in water). Estimate the spontaneous decay time (a.k.a. life time) for a 1H in the spin down state.

(b) Assume T1 = 1 µs for electron spin 1/2’s in a solid-state maser material in a static magnetic field of 1 T
at temperature 300 K. Estimate the spontaneous decay time for an electron in the spin up state.

(c) Imagine a gas of 2-level atoms with optical resonance frequency at yellow, T2 = 10−8 s, and T1 = 10−5 s.
T = 300 K. Estimate the spontaneous decay time for an atom in the excited state. What is the characteristic
stimulated transition time due to the coupling to the background thermal (black body) radiation?

Problem 2 (200 pt): Frequency response of a 2-level “atom” — stimulated transition rate
W (ω) as a function of frequency — in the rate-equation regime

1H spin-1/2’s are in a static magnetic field ~B0 = B0ẑ with the resonant frequency of ω0 = γB0, spin-
spin relaxation time T2, and spin-lattice relaxation time T1. They are excited by a transverse time-varying
magnetic field along the x direction at a general frequency ω

~B⊥ = 2B1x̂ cos(ωt) (1)

where B1 � B0. Since we know that only the clockwise rotating field component of Eq. (1) matters (rotating
wave approximation), we can just get started with

~B⊥ = B1[x̂ cos(ωt)− ŷ sin(ωt)] (2)

instead. The Rabi frequency is then given by ω1 = γB1. This problem seeks to calculate the stimulated
transition rate W (ω) as a function of frequency—which represents the frequency response of the system—in
the rate-equation regime (ω1T2 � 1 and T2 � T1). Electron spin-1/2’s in many solid-state maser materials
fall into the rate-equation regime but here we want to show the same physics with 1H spin-1/2’s so that
we don’t have to bother with the negative gyromagnetic ratio. We will solve the problem using the Bloch
equation for the magnetization ~M :

Ṁx = γ(MyBz −MzBy)−Mx/T2 (3)

Ṁy = γ(MzBx −MxBz)−My/T2 (4)

Ṁz = γ(MxBy −MyBx) + (M0 −Mz)/T1 (5)

where M0 is the magnetization in thermal equilibrium.

(a) As T2 � T1 (rate-equation regime), Mz relatively slowly varies whereas for a given Mz, the amplitude

of the transverse magnetization ~M⊥ = x̂Mx + ŷMy will virtually instantaneously reach a steady-state value.

We first calculate this steady-state response of ~M⊥ to the excitation ~B⊥ for a given Mz, where this response
will be a function of Mz. To this end, Eq. (2) is re-written into the phasor form:

~̃B⊥ = x̂B1e
iωt + ŷiB1e

iωt. (6)

and ~M⊥ can be anticipated in the same phasor form

~̃M⊥ = x̂M1e
iωt + ŷiM1e

iωt. (7)
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Here M1 is a complex constant (∝ steady-state amplitude). M1/B1 then represents the steady-state response
for a given Mz. By using Eqs. (6) and (7) in Eqs. (3) and (4)—Eqs. (3) and (4) work for phasors as well

because in each of the cross product terms of the ~M and ~B components therein, always one component is
real (that is, Bz = B0 and Mz are real)—, show that the transverse susceptibility linking B1 to M1 is given
by

χ(ω) = µ0
M1

B1
= −iµ0

γMz

i(ω − ω0) + 1/T2
. (8)

As expected, χ is a function of Mz. Optional (not to be graded): can you check the Kronig-Kramers relations?

(b) Repeat the calculation of part (a) for the counter-clockwise rotating excitation field to show that the
transverse susceptibility in this case is far smaller than part (a). This is the frequency-domain demonstration
of the validity of the rotating wave approximation.

(c) By using the steady-state response of ~M⊥ to ~B⊥ (part (a)) in the 3rd Bloch equation [Eq. (5)], we can
obtain the evolution equation for Mz. Specifically, the γ(MxBy −MyBx) part in Eq. (5) containing only
transverse components can be re-written in terms of B1 and χ ∝Mz by using the result of (a). This requires
care, however: using the phasors blindedly in γ(MxBy −MyBx) won’t work, as each term here is a product
of two complex numbers. Through this calculation, show that Mz evolves according to:

Ṁz + (Mz −M0)/T1 = γB2
1χ
′′(ω)/µ0 (9)

where χ′′ ∝ Mz is the imaginary part of χ. Show that this is of the same form as the rate equation for
the population difference ∆N = N+ −N−, and from this formal correspondence, prove that the stimulated
transition rate W is given by

W (ω) =
ω2
1

2

[
1/T2

(ω − ω0)2 + (1/T 2
2 )

]
(10)

Show that this gives W (ω0) = T2/2×ω2
1 , which we discussed in Lecture #3. Eq. (10) is a celebrated result,

which holds for any 2-level atoms in the rate-equation regime whether the stimulation mechanism is magnetic
(as in this case) or electric (as in the electron dipole resonance, in which case the Rabi oscillation frequency
ω1 will be proportional to the excitation electric field). Finally, while in the coherent Rabi dynamics, the
3-dB excitation bandwidth of the response was 2ω1 (Lecture #1), show that in the rate-equation dynamics
case treated here, the 3-dB excitation bandwidth is 2/T2.

(d) We can alternatively calculate W (ω) by using the result of the time-dependent perturbation theory in
quantum mechanics: Fermi’s golden rule or its variational form. For the stimulated transition from |+〉 to
|−〉, the rate is

W =
2π

~
|〈−|H⊥|+〉|2ρ(E−) (11)

where H⊥ = −γ~S · ~B⊥ is the perturbing Hamiltonian and ρ(E−) is the density of states near the |−〉 state.
In fact, a more suitable version given the T2 broadening (Eq. (8)) is instead

W =
1

~2
|〈−|H⊥|+〉|2g(ω). (12)

Here g(ω) is what is called line shape function and is given by g(ω) ∝ [(ω − ω0)2 + 1/T 2
2 ]−1 with the

proportionality constant set by the normalization condition
∫∞
0
g(f)df = 1. Calculate the matrix element

〈−|H⊥|+〉 (you will see that |〈−|H⊥|+〉|2 ∝ ω2
1 , which bears the critical information that the stimulation

emission rate is proportional to the excitation energy), and show that Eq. (12) leads to the same result as
Eq. (10).
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