
Applied Physics 216 — Assignment #8
Professor: Donhee Ham

Teaching Fellow: Jundong Wu
Date: April 10th, 2017

Due: 10:20am + 10 min grace period, April 21st, 2017; slide your work under through the door at
Maxwell-Dworkin Room 131.

Typical characteristics of common laser transitions — Table useful in many parts of this set.

Stimulated Homogenous or
Laser Transition transition Spontaneous inhomogenous Refractive
medium wavelengtha cross sectionb lifetime linewidth index

λ0 (µm) σ(f0) (cm2) 1/δr ∆f0 or ∆fi n
Ar+ 0.515 3× 10−12 10 ns 3.5 GHz (∆fi) ∼ 1
Rhodamine-6G dye 0.56 ∼ 0.64 2× 10−16 5 ns 40 THz (∆f0, ∆fi) ∼ 1.40
He-Ne 0.633 3× 10−13 150 ns 1.5 GHz (∆fi) ∼ 1
Cr3+:Al2O3 (Ruby) 0.694 2× 10−20 3 ms 330 GHz (∆f0) ∼ 1.76
Ti3+:Al2O3 (Ti:Sapphire) 0.7 ∼ 1.05 3× 10−19 3.9 µs 100 THz (∆f0) ∼ 1.76
Yb3+:YAG 1.03 2× 10−20 1 ms 1 THz (∆f0) ∼ 1.82
Nd3+:glass 1.053 4× 10−20 370 µs 7 THz (∆fi) ∼ 1.50
Nd3+:YAG 1.064 3× 10−19 230 µs 150 GHz (∆f0) ∼ 1.82
InGaAsP 1.3 ∼ 1.6 2× 10−16 2.5 ns 10 THz (∆f0) ∼ 3.54
Er3+: silica 1.55 6× 10−21 10 ms 5 THz (∆f0, ∆fi) ∼ 1.46
CO2 10.6 3× 10−18 3 s 60 MHz (∆fi) ∼ 1

aThe transition wavelength in the table is in reference to free space. Note, in contrast, that the wavelength used in our gain

coefficient formula is in reference to the laser medium.
bFor the definition and interpretation of stimulated transition cross section, see Problem 2.

Problem 1 (100 pt): Doppler broadened gain coefficient

(a) Calculate—in all necessary details—the imaginary part of the susceptibility of a Doppler broadened laser
medium in a strongly inhomogeneous limit to show that the gain coefficient is given by

γ(f) = −
√
π ln 2

4π2

∆Nλ2δr
∆fi

exp

[
−4 ln 2

(
f − f0
∆fi

)2
]

(1)

where

∆fi =

√
(8 ln 2)kBT

Mv2
f0. (2)

(b) Compute ∆fi for argon ion laser, He-Ne laser (neon gives the relevant atomic transition), and CO2 laser
at room temperature using Eq. (2), and compare these results with the measured values in Column 5 of the
table above.

Problem 2 (60 pt): Stimulated transition cross section

Assume that a light of frequency f (near f0) with power P is illuminated over area A containing a single
atom at state |1〉. The amount of power absorbed by this atom can be written as P × σ(f)/A, where σ(f)
introduced here with the unit of area defines an “effective capture area” of the atom. This is the (stimulated
transition) cross section and its value at f = f0 is what is shown in the table above. The cross section σ(f) is
closely related to the gain coefficient γ(f). To see this, assume an atomic number density N in a slab of area
A and a thickness of dz; of these, N1 atoms per unit volume are in state |1〉 and N2 atoms per unit volume
are in state |2〉. If the light of frequency f and power P is illuminated over the area A, the total effective
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capture area of all atoms in state |1〉 is given by (N1Adz) × σ(f). Similarly, the total effective stimulated
radiation area of all atoms in state |2〉 is given by (N2Adz) × σ(f). Here we have used the fact that the
effective capture area σ(f) for a single atom in |1〉 as a receiving electric dipole antenna is the same as the
effective radiation area σ(f) for a single atom in |2〉 as a transmitting electric dipole antenna (reciprocity
theorem in electromagnetism). Then the change in the light power is given by

dP = − (N1Adz)× σ(f)

A
× P +

(N2Adz)× σ(f)

A
× P = −∆Nσ(f)Pdz. (3)

Converting P to I via P = IA, we obtain

dI

dz
= −∆Nσ(f)I. (4)

Since I evolves according to dI/dz = γ(f)I, σ(f) and γ(f) must be directly related by

σ(f) = −γ(f)

∆N
. (5)

This cross section, with the unit of area per atom, offers a very useful way to represent the strength of an
atomic transition in response to an applied signal.

(a) Show that in a homogeneously broadened medium σ(f) can be written as

σ(f) =
λ2δr
8π

g(f) (6)

and its value at f = f0 is given by

σ(f0) =
1

4π2
× λ2δr

∆f0
(7)

Similarly, show that in a medium inhomogeneously broadened due to Doppler effect, σ(f0) is given by

σ(f0) =

√
π ln 2

4π2
× λ2δr

∆fi
≈ 1

8π
× λ2δr

∆fi
(8)

(b) Calculate the cross section σ(f0) for the Ruby laser, He-Ne laser, argon ion laser, and CO2 laser using
the formula above together with the data in Columns 2, 4, 5, and 6 of the table of Page 1, and compare the
results with the experimental cross sections in Column 3 of the same table. You will see that the match is
overall reasonably good, but not exact in most cases, and it can be also quite off.

(c) A 15-cm long rod of Nd3+:glass as a single-pass laser amplifier has a total small-signal gain (not the gain
coefficient, but the actual gain) of 10 at λ0 ≈ 1.053 µm. Use the cross section data of the table of Page 1 to
determine ∆N (per cm3) responsible for this gain, while neglecting any medium loss.

Problem 3 (40 pt): Gain saturation

A homogeneously broadened single-pass laser amplifier with length d = 5 cm has a saturation photon flux
density nph,sat of 1× 1018 photons/(cm2s). When the photon flux density at the amplifier input is 2× 1015

photons/(cm2s), that at the output is 2 × 1016 photons/(cm2s). Calculate the small-signal gain coefficient
as well as the gain itself. What is the photon flux density at which the gain coefficient is reduced from the
small-signal gain coefficient by 5 times? Determine the gain coefficient when the input photon-flux density
is 4× 1019 photons/(cm2s).

Problem 4 (370 pt): Laser oscillator exercise

(a) (30 pt) Considering an argon ion laser with a resonator length of 100 cm and the loss coefficient at the
half of the peak small-signal gain coefficient, estimate the number of standing wave resonance modes that
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can be sustained. Estimate the threshold population inversion (per cm3) to acquire laser oscillation at f0
when one mirror has a reflectance (local reflection coefficient squared) of 98% and the other 100% (assume
no loss otherwise). What is the maximum resonator length that allows for a single-mode oscillation?

(b) (30 pt) A He-Ne laser has a resonator length of 30 cm and is producing a multi-mode output power of
50 mW. The peak small-signal gain coefficient is twice the loss coefficient, and the mirrors are adjusted to
maximize the intensity of the strongest mode. Estimate the power of the strongest mode.

(c) (30 pt) A He-Ne laser has a peak small-signal gain coefficient of γ0(f0) = 2 × 10−3 cm−1 and has a
resonator length of 100 cm. The mirror reflectances are 100% and 97% while all other losses are negligible.
Determine the number of modes that will break into self-sustained oscillation.

(d) (30 pt) Consider a Yb3+:YAG laser with a Yb3+ doping density of 1.4 × 1020 cm−3. First assuming
thermal equilibrium at room temperature 300 K (no pumping), calculate the absorption coefficient (due to
the Yb3+ dopants) at frequency f = f0. Second, assuming the mirror reflectances of 80% and 100% but
neglecting any other loss, calculate the threshold population inversion (per cm3) required for oscillation start
up at f = f0 (resonator length: 6 cm).

(e) (30 pt) In a homogenously broadened laser, argue that the small atomic pulling of the l-th standing
wave resonance mode frequency fl = (v/2d)l of the pure mirror resonator into a new mode frequency f ′l
towards f0 can be approximately quantified as

f ′l − fl
fF

≈ γ(fl)d

π

f0 − fl
∆f0

. (9)

Assuming n ≈ 1, ∆f0 = 1.5 GHz, d = 1 m, and αtot = 0.05/m, estimate the maximum possible oscillation
frequency correction |(f ′l −fl)/fF | for the final single mode oscillation1 (the maximum value will be attained
when |f0 − fl| becomes the largest, whose estimation is part of this problem).

(f) (150 pt) In this problem we consider the temporal growth of intensity I in a single-mode laser oscillator.
We will ignore the spatial dependence of the intensity that in general arises due to standing wave resonance
formation. Show that before the gain saturation becomes appreciable, the laser oscillator’s initial start-up
dynamics builds the intensity I according to

I(t) = I0 exp

[
(γ0/αtot)− 1

τp
t

]
, (10)

where τp is the photon lifetime, γ0 is the small-signal gain coefficient at the oscillation frequency, αtot is
the overall loss coefficient, and I0 is the initial intensity (e.g., due to noise). The ratio γ0/αtot ≡ r above
represents how strong the initial (small-signal) gain is as compared to the loss. Now, Eq. (10) based on
a fixed small-signal gain coefficient will become invalid once I(t) grows sufficient and starts saturating the
gain coefficient. If we seek to describe the entire evolution of I(t) from initial start-up all the way to
final oscillation with gain saturation, we must use the intensity-dependent (and thus time-dependent) gain
coefficient2 γ(t),

γ(t) =
γ0

1 + 2I(t)/Isat
, (11)

in solving a proper different equation for I(t). Since the differential equation is difficult to tackle with Eq.
(11), consider the case where I(t) � Isat for all time, even in the final oscillation.3 In this case, Eq. (11)
can be approximated into

γ(t) ≈ γ0
[
1− 2I(t)

Isat

]
. (12)

1We here ignore the spatial hole burning.
2Can you reason why we use 2I(t) instead of I(t) in Eq. (11)?
3This is the case where the small-signal gain coefficient γ0 is not much greater than αtot and thus the final oscillation is

reached with I(t) far below Isat.
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Use this intensity-dependent gain coefficient to solve the proper differential equation for I(t) to obtain

I(t) =
(Isat/2)(1− r−1)I0 exp [(r − 1) · t/τp]

(Isat/2)(1− r−1)− I0 + I0 exp [(r − 1) · t/τp]
(13)

where r = γ0/αtot as defined earlier. Check that during the initial start-up when the saturation effect can
be ignored, Eq. (13) is reduced to Eq. (10). Calculate the final value of I(t), which we will call If , and show
that the corresponding final γ value exactly equals αtot. Sketch I(t) as a function of t with r = 1.1 (and
check if this is a small enough r to be consistent with the approximation I(t) � Isat we are using). Show
that the time it takes for the laser intensity to build from I0 to 90% of If is given by

∆t ≈ τp
r − 1

ln(
9If
I0

). (14)

Estimate the above build-up time for a laser oscillator with mirror reflectances 100% and 95%, mirror dis-
tance 15 cm, no medium loss, r = 1.1, and If/I0 = 108.

(g) (70 pt) Consider a single-mode laser oscillator. While one mirror is perfectly reflecting, the other has
a reflectance R < 1, thus it exhibits a non-vanishing transmittance T = 1 − R > 0, which is necessary to
take a portion of the laser light outside the resonator to make use of it. Let the output light’s intensity be
Iout. If T is sufficiently small, the resonator is not appreciably leaky and the laser builds a good steady-state
intensity inside the resonator, but it is difficult to take some of this outside the resonator, so Iout will be
small. On the other hand, if T is sufficiently large, the resonator becomes too leaky for the laser to build up
a good amount of steady-state light intensity inside the resonator, and thus Iout will be small again. In sum,
there must be an optimum T that maximizes Iout. Calculate the optimum T in terms of the medium loss α
(which excludes the mirror effect), the small-signal gain coefficient γ0, and the resonator length d. Feel free
to approximate assuming αtotd� 1.
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